Math, asked by KhushiAgrahari, 1 year ago

prove that √7+√5 is irrational

Answers

Answered by Cutiepie93
23
Hello friends!!

Here is your answer :

Let \: \sqrt{7} + \sqrt{5} \: \: be \: \: rational \: \: number

 \sqrt{7} + \sqrt{5} = \frac{x}{y} \: \: where \: \: x \: \: and \: \: y \: \: are \: \: coprime.

Squaring both sides,

 {( \sqrt{7} + \sqrt{5}) }^{2} = { (\frac{x}{y} )}^{2}

Using identity :

 {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy

7 + 5 + 2 \sqrt{35} = \frac{ {x}^{2} }{ {y}^{2} }

2 \sqrt{35} = \frac{ {x}^{2} }{ {y}^{2} } - 7 - 5

2 \sqrt{35} = \frac{ {x}^{2} }{ {y}^{2} } - 7 - 5

2 \sqrt{35} = \frac{ {x}^{2}  - 7{y}^{2} - 5{y}^{2}}{ {y}^{2} }

 \sqrt{35} = \frac{ {x}^{2} - 7 {y}^{2}-5{y}^{2} }{2 {y}^{2} }

Hence, x, y ,7, 5and 2 has no common factor.

 \frac{ {x}^{2} - 7 {y}^{2} -5{y}^{2}}{ {2y}^{2} } \: is \: a \: \: rational \: \: number.

therefore \: \sqrt{35} \: \: is \: \: a \: \: rational \: \: number.

But \: \: \sqrt{35} \: \: is \: \: an \: \: irrational \: \: number.

So,our \: \: assumption \: \: is \: \: wrong.

Therefore,

 \sqrt{7} + \sqrt{5} \: \: is \: \: an \: \: irrational \: \: number.

Hope it helps you.. ☺️☺️☺️☺️

# Be Brainly
Answered by MarkAsBrainliest
6
Answer :

If possible, let us consider that (√7 + √5) is rational.

Let, √7 + √5 = a/b, where a and b are integers with non-zero b.

⇒ √7 = a/b - √5

Now, squaring both sides, we get

7 = ( a/b - √5 )²

⇒ 7 = a²/b² - 2√5 a/b + 5

⇒ 2√5 a/b = a²/b² + 5 - 7

⇒ 2√5 a/b = a²/b² - 2

⇒ √5 = a/2b - b/a

Since, a/b is rational, b/a is also rational, then (a/2b - b/a) is also rational which leads to a contradiction to the fact that √5 is irrational.

Thus, (√7 + √5) is irrational. [Proved]

#MarkAsBrainliest
Similar questions