Math, asked by asifshaikh170508, 25 days ago

prove that √7 is irrational​

Answers

Answered by Lovishhhhhh
1

Step-by-step explanation:

Given √7

To prove: √7 is an irrational number.

Proof:

Let us assume that √7 is a rational number.

So it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

√7 = p/q

Here p and q are coprime numbers and q ≠ 0

Solving

√7 = p/q

On squaring both the side we get,

=> 7 = (p/q)2

=> 7q2 = p2……………………………..(1)

p2/7 = q2

So 7 divides p and p and p and q are multiple of 7.

⇒ p = 7m

⇒ p² = 49m² ………………………………..(2)

From equations (1) and (2), we get,

7q² = 49m²

⇒ q² = 7m²

⇒ q² is a multiple of 7

⇒ q is a multiple of 7

Hence, p,q have a common factor 7. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√7 is an irrational number.

hope it helps you!

mark me as the brainliest!♥️

Answered by andrea76
5

Answer:

How do I prove by contradiction that √7 is irrational?

let us assume that √7 be rational.

then it must in the form of p / q.

As definition of rational number says.. P is whole number q is non zero whole number.. And p and q is simplest ratio which is expressed.. That means there exists no prime factor common in p and q.

√7 = p / q

√7 x q = p

squaring on both sides

7q² = p² ------1.

p is divisible by 7

p = 7c [c is a positive integer] [squaring on both sides ]

p²= 49c²

subsitute p² in eqn(1) we get

7q² = 49 c²

q² = 7c²

q is divisble by 7

thus q and p have a common factor 7.

there is a contradiction to our assumption

as our assumsion p & q are co prime but it has a common factor.

so that √7 is an irrational.

Similar questions