Math, asked by yogendersharma501, 4 months ago

prove that 8 sin 10° sin 50° sin70° =1/16​

Answers

Answered by mathdude500
1

Correct Statement is

Prove that

:\implies \tt \:  8sin10 \degree \: sin50\degree \: sin70\degree = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

We know

 \boxed{ \red{\tt \: 2sinxsiny = cos(x - y) - cos(x + y)}}

 \boxed{ \pink{ \tt \: 2sinxcosy = sin(x + y) + sin(x - y)}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

Consider LHS

:\implies \tt \:  8sin10 \degree \: sin50\degree \: sin70\degree

:\implies \tt \:  4(2sin50 \degree \: sin10\degree \:) sin70\degree

:\implies \tt \:  4(cos(50\degree \:   -  10\degree) - cos(50\degree \:  + 10\degree))sin70\degree

:\implies \tt \:  4(cos40\degree \:  - cos60\degree)sin70\degree \:

:\implies \tt \:  4(cos40\degree \: - \dfrac{1}{2} )sin70\degree

:\implies \tt \:  4cos40\degree \:sin70\degree \: - 2sin70\degree \:

:\implies \tt \:  2(2sin70\degree \:cos40\degree \:) - 2sin70\degree \:

:\implies \tt \:  2(sin(70\degree \: + 40\degree \:) + sin(70\degree \: - 40\degree \:)) - 2sin70\degree \:

:\implies \tt \:  2(sin110\degree \: + sin30\degree \:) - 2sin70\degree \:

:\implies \tt \:  2(sin110\degree \: + \dfrac{1}{2} ) - 2sin70\degree \:

:\implies \tt \:  2sin110\degree \: + 1 - 2sin(180\degree \: - 110\degree \:)

:\implies \tt \:  2sin110\degree \:  + 1 - 2sin110\degree \:

:\implies \tt \:  1

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions