Math, asked by king7819, 1 year ago

Prove that : 8 sin 20 sin 40 sin 80 = (3)^1/2

Answers

Answered by MaheswariS
4

\textsf{Given:}

\textsf{8\;sin20\;sin40\;sin80}

=\textsf{8\;sin40\;sin20\;sin80}

=\textsf{8\;sin(60-20)\;sin20\;sin(60+20)}

\textsf{Using}

\boxed{\mathsf{sin(60-A)\;sinA\;sin(60+A)=\frac{1}{4}sin\,3A}}

\textsf{we get}

\mathsf{=8[\frac{1}{4}sin\,3(20)]}

\mathsf{=8[\frac{1}{4}sin\,60]}

\mathsf{=8[\frac{1}{4}\frac{\sqrt3}{2}]}

\mathsf{=8[\frac{\sqrt3}{8}]}

\mathsf{=\sqrt3}

\implies\,\boxed{\mathsf{8\;sin20\;sin40\;sin80=\sqrt3}}

Find more:

PROVE THAT:

cos 12 cos 24 cos 36 cos 48 Cos 60 cos 72 cos 84 equal = 1 / 128​

https://brainly.in/question/9849513

Answered by banerjeesujay88
0

Answer:

this is my answer

...Sayan Banerjee

Attachments:
Similar questions