Math, asked by saminansurkar, 2 months ago

Prove that: 9π/8-9/4 sin inverse 1/3=9/4 sin inverse 2√2/3.​

Answers

Answered by mathdude500
2

Given Question :-

 \rm \: Prove \: that \: \dfrac{9\pi}{8} - \dfrac{9}{4} {sin}^{ - 1}\dfrac{1}{3} =  \dfrac{9}{4} {sin}^{ - 1}\dfrac{2 \sqrt{2} }{3}

Identities Used :-

\boxed{ \sf \:  {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}}

\green{\large\underline{\bf{Solution-}}}

Consider,

\rm :\longmapsto\:\dfrac{9\pi}{8} - \dfrac{9}{4} {sin}^{ - 1}\dfrac{1}{3}

 \:  \: \rm  =  \:  \: \dfrac{9}{4} \bigg(\:\dfrac{\pi}{2} -  {sin}^{ - 1}\dfrac{1}{3} \bigg)

 \:  \: \rm  =  \:  \: \dfrac{9}{4} \bigg(\:\ {cos}^{ - 1}\dfrac{1}{3} \bigg)

 \:  \: \rm  =  \:  \: \dfrac{9}{4} \bigg(\:\ {sin}^{ - 1}\dfrac{2 \sqrt{2} }{3} \bigg)  \:  \:  \:  \{using \:  \triangle \: method \}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \sf \:  {sec}^{ - 1}x +  {cosec}^{ - 1}x = \dfrac{\pi}{2}}

\boxed{ \sf \:  {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2}}

\boxed{ \sf \: 2 {tan}^{ - 1}x =  {tan}^{ - 1}\bigg(\dfrac{2x}{1 -  {x}^{2} } \bigg)}

\boxed{ \sf \: 2 {tan}^{ - 1}x =  {sin}^{ - 1}\bigg(\dfrac{2x}{1  +   {x}^{2} } \bigg)}

\boxed{ \sf \: 2 {tan}^{ - 1}x =  {cos}^{ - 1}\bigg(\dfrac{1 -  {x}^{2} }{1  +   {x}^{2} } \bigg)}

\boxed{ \sf \: {tan}^{ - 1}x +  {tan}^{ - 1}y  =  {tan}^{ - 1}\bigg(\dfrac{x + y}{1 -  xy } \bigg) \:  \:  \: if \: xy \leqslant 1}

\boxed{ \sf \: {tan}^{ - 1}x +{tan}^{ - 1}y  = \pi +  {tan}^{ - 1}\bigg(\dfrac{x + y}{1 -  xy } \bigg) \:  \:  \: if \: xy  > 1}

Attachments:
Similar questions