Math, asked by arshdeep9643, 2 months ago

prove that : (a) (1) a c ( a u b) (2) b c (a u b) (b) (1) (a intersection b) c a (2) (a intersection b ) c b​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

1. To Prove :-

\bf :\longmapsto\:A \:  \sub \: A \:  \cup \: B

Proof :-

\rm :\longmapsto\:Let \: x \:  \in \: A

\rm :\implies\:x \:  \in \: A \: \cup \:B

\bf\implies \:A \: \sub \:A \: \cup \:B

Hence, Proved

2. Prove that

\bf :\longmapsto\:B \:  \sub \: A \:  \cup \: B

Proof :-

\rm :\longmapsto\:Let \: x \:  \in \: B

\rm :\implies\:x \:  \in \: A \: \cup \:B

\bf\implies \:B \: \sub \:A \: \cup \:B

Hence, Proved

3. Prove that

\bf :\longmapsto\:A \: \cap \:B \: \sub \:A

Proof :-

\rm :\longmapsto\:Let \: x \:  \in \: A \: \cap \:B

\rm :\implies\:x \:  \in \: A \:  \: and \:  \: x \:  \in \: B

\rm :\implies\:x \:  \in \: A

\bf\implies \:A \: \cap \:B \: \sub \:A

Hence, Proved

4. Prove that

\bf :\longmapsto\:A \: \cap \:B \: \sub \:B

Proof :-

\rm :\longmapsto\:Let \: x \:  \in \: A \: \cap \:B

\rm :\implies\:x \:  \in \: A \:  \: and \:  \: x \:  \in \: B

\rm :\implies\:x \:  \in \: B

\bf\implies \:A \: \cap \:B \: \sub \:B

Hence Proved

Additional Information :-

\green{\boxed{ \bf{ \: A \:  -  \: B \:  =  \: A \: \cap \: {B}^{c} }}}

\green{\boxed{ \bf{ \: (A - B)\cup \:(A \: \cap \:B) = A}}}

\green{\boxed{ \bf{ \:  {(A \: \cup \:B)}^{c} } =  {A}^{c} \: \cap \: {B}^{c} }}

\green{\boxed{ \bf{ \:  {(A \: \cap \:B)}^{c} } =  {A}^{c} \: \cup \: {B}^{c} }}

\green{\boxed{ \bf{ \: A \: \cap \: {A}^{c} } =  \:  \phi}}

\green{\boxed{ \bf{ \: A \: \cup \: {A}^{c} } =  \:  U}}

\green{\boxed{ \bf{ \:  { \phi}^{c} } = U}}

Answered by nikku1122
0

Answer:

madrc.hod jayad.a gy.an mt bato nhi tho tmhara smne tumhari mummy ko ch.od dunga aise v bhaut sex.y h tmhari mum.my

Similar questions