Prove that a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3=0 when a+b+c=0.
Answers
Answered by
5
Step-by-step explanation:
→ a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3=0
→ a(b+c)/bc + b(a+c)/ac + c(a+b)/ab + 3=0
→ a²(b+c)/abc + b²(a+c)/abc + c²(a+b)/abc + 3=0
→ { a²(b+c)+b²(a+c)+c²(a+b)+3abc }/abc=0
→ a²(b+c)+b²(a+c)+c²(a+b)+3abc=0
→ a²b+a²c+b²a+b²c+c²a+c²b+3abc = 0
→ a²b+b²a+abc+a²c+c²a+abc+c²b+b²c+abc=0
→ ab(a+b+c)+ac(a+b+c)+bc(a+b+c)=0
→ (a+b+c)(ab+ac+bc)=0
→ a+b+c=0. proved
Similar questions