Math, asked by banjararaj153, 8 months ago

(Prove that):
A.
1 - tan 20°. tan 25º = tan 20° + tan 25° ​

Answers

Answered by TheHavok
1

Step-by-step explanation:

tan(a+b)= (tan a+tan b)/(1-tan a tan b)

tan(20°+25°)= (tan 20+ tan25)/(1-tan20.tan25)

tan 45°= (tan 20+ tan25)/(1-tan20.tan25)

1=(tan 20+ tan25)/(1-tan20.tan25)

1 - tan20°.tan25°= tan 20°+ tan 25°

Answered by gpvvsainadh
2

Step-by-step explanation:

formula

 \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta )  }

 \alpha  = 20 \: \: and \:  \beta  = 25

 \tan( 20  +  25 )  =  \frac{ \tan( 20 )  +  \tan( 25 ) }{1 -  \tan( 20 ) \tan( 25)  }

 \tan( 45 )  =  \frac{ \tan( 20 )  +  \tan( 25 ) }{1 -  \tan( 20 ) \tan( 25)  }

we \: know \: that \:  \tan(45)  = 1

 1 =  \frac{ \tan( 20 )  +  \tan( 25 ) }{1 -  \tan( 20 ) \tan( 25)  }

  { \tan( 20 )  +  \tan( 25 ) } = {1 -  \tan( 20 ) \tan( 25)  }

Similar questions