prove that (a^2 -b^2)^3+(b^2-c^2)^3 +(c^2-a^2)^3=3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)
Answers
Answered by
18
---------------------------------------------------------------------------------------------------------
Let , ( a^2 - b^2 ) = X ---------------------- equation 1
( b^2 - c^2 ) = Y ---------------------- equation 2
( c^2 - a^2 ) = Z ----------------------- equation 3
Adding all these three equations,
a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = X + Y + Z
0 = X + Y + Z.
We know that when X+ Y + Z = 0, then X³ + Y³ + Z³ = 3XYZ
Now,
X³ + Y³ + Z³ = 3XYZ
By the the values of X, Y and Z in the above equation,
( a^2 - b^2)³ + ( b^2 - c^2 )³ + ( c^2 - a^2 )³ =3 ( a^2 - b^2 ) ( b^2 - c^2 ) ( c^2 - a^2 )
= 3 ( a + b ) ( a - b ) ( b + c ) ( b -c ) ( c + a ) ( c - a )
=3 ( a + b ) ( b + c ) ( c + a ) ( a -b ) ( b - c ) ( c - a )
----------------------------------------------------------------------------------------------------
Let , ( a^2 - b^2 ) = X ---------------------- equation 1
( b^2 - c^2 ) = Y ---------------------- equation 2
( c^2 - a^2 ) = Z ----------------------- equation 3
Adding all these three equations,
a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = X + Y + Z
0 = X + Y + Z.
We know that when X+ Y + Z = 0, then X³ + Y³ + Z³ = 3XYZ
Now,
X³ + Y³ + Z³ = 3XYZ
By the the values of X, Y and Z in the above equation,
( a^2 - b^2)³ + ( b^2 - c^2 )³ + ( c^2 - a^2 )³ =3 ( a^2 - b^2 ) ( b^2 - c^2 ) ( c^2 - a^2 )
= 3 ( a + b ) ( a - b ) ( b + c ) ( b -c ) ( c + a ) ( c - a )
=3 ( a + b ) ( b + c ) ( c + a ) ( a -b ) ( b - c ) ( c - a )
----------------------------------------------------------------------------------------------------
Anonymous:
Plz.. mark as brainliest
Similar questions