Math, asked by Nishant9999, 1 year ago

prove that a^2+b^2+c^2-ab-bc-ca is always non-negative for all values of a,b and c

Answers

Answered by honeybee05
11
a^2+b^2+c^2-ab-bc-ca
= 1/2(2a^2+2b^2+2c^2-2ab-2bc-2ca)
= 1/2[(a^2+b^2+c^2)+(a^2+b^2+c^2-2ab-2bc-2ca)]
= 1/2[( a^2+b^2+c^2) + (a-b-c)^2]

For all values of a,b,c;
a^2+b^2+c^2>0
and (a-b-c)^2>0

Therefore 1/2[(a^2+b^2+c^2) + ( a-b-c)^2>0
therefore a^2+b^2+c^2-ab-bc-ca is always positive.

Hence proved!

Nishant9999: thanks
khushimahesgmailcom: wlcm
khushimahesgmailcom: mention not
Nishant9999: hii
Nishant9999: friends
khushimahesgmailcom: hlo
Answered by arnav170
2

Answer:

a^2+b^2+c^2-ab-bc-ca

= 1/2(2a^2+2b^2+2c^2-2ab-2bc-2ca)

= 1/2[(a^2+b^2+c^2)+(a^2+b^2+c^2-2ab-2bc-2ca)]

= 1/2[( a^2+b^2+c^2) + (a-b-c)^2]

For all values of a,b,c;

a^2+b^2+c^2>0

and (a-b-c)^2>0

Therefore 1/2[(a^2+b^2+c^2) + ( a-b-c)^2>0

therefore a^2+b^2+c^2-ab-bc-ca is always positive.

Hence proved!

Step-by-step explanation:

Similar questions