prove that ,a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B)=0
Answers
Step-by-step explanation:
To prove--->
a²(cos²B - Cos²C)+b²(Cos²C- Cos²A)+c²(Cos²A-Cos²B) = 0
Proof---> We have some formula
(1) Sine Rule
a / SinA = b / SinB = C / SinC = k
Now a / SinA = k
=> a = k SinA
Similarly,
b = k SinB , c = k SinC
(2) Sin²θ + Cos²θ = 1
Cos²θ = 1 - Sin²θ
Now returning to original problem . first we solve the first term of LHS
First term = a² ( Cos²B - Cos²C )
= ( kSinA )² { 1 - Sin²B - ( 1 - Sin² C) }
= k² Sin²A ( 1 - Sin²B - 1 + Sin²C )
= k² Sin²A ( Sin²C - Sin²B )
= k² ( Sin²A Sin²C - Sin²B Sin²A )
= k²Sin²A Sin²C - k²Sin²B Sin²A
Similarly,
Second term = k² Sin²B Sin²A - k² Sin²C Sin²B
Third term = k²Sin²C Sin²B - k² Sin² A Sin²C )
LHS = first term + Second term + third term
= K²Sin²ASin²C - k² Sin²BSin²A+ k²Sin²BSin²A-k² Sin²CSin²B + k²Sin²CSin²B - k²Sin²ASin²C
Clearly all terms cancel out each other
= 0 = RHS