prove that -
a^3-b^3=(a-b) (a^2+ab+b^2)
Correct answer - BRAINLIEST
Incorrect answer - REPORT
And please answer fast
Answers
Answer:
Step-by-step explanation:
Very well known mathematical identity is
(a+b)3=a3+3a2b+3ab2+b3
&
(a−b)3=a3−3a2b+3ab2−b3
The above can be derived easily by successive multiplication like
(a+b)2=(a+b)∗(a+b)
=(a2+a∗b+b∗a+b2)
=(a2+2ab+b2)
So(a+b)3
=(a+b)2∗(a+b)
=(a2+2ab+b2)∗(a+b)
=a3+2a2b+b2a+a2b+2ab2+b3
=a3+3a2b+3ab2+b3
Similar for the other .
Now starting with the second identity
(a−b)3=a3−3a2b+3ab2−b3
Or,(a−b)3+3a2b−3ab2=a3−b3
Or,(a−b)3+3ab(a−b)=a3−b3
Or,(a−b)[(a−b)2+3ab]=a3−b3
Or,(a−b)(a2–2ab+b2+3ab)=a3−b3
Or,(a−b)(a2+ab+b2)=a3−b3
Or,a3−b3=(a−b)(a2+ab+b2)
You can do it from the opposite part like
(a−b)(a2+ab+b2)
=a∗(a2+ab+b2)−b∗(a2+ab+b2)
=a3+a2b+ab2−ba2−ab2−b3
=a3−b3
So
a3−b3=(a−b)(a2+ab+b2)
hii
your answer is given above...
please mark the answer brainliest