Math, asked by ayushjain90, 1 year ago

prove that a^3 + b^3 + c^3 - 3abc = 1/2(a + b + c)[(a-b)^2+(b-c)^2+(c-a)^2]

Answers

Answered by vibhwizard
8
proved in photo

hope this helps
Attachments:

ayushjain90: Did you multiply n divided by 2?
vibhwizard: yes
vibhwizard: to prove it
ayushjain90: ok
ayushjain90: understood..thnx
Answered by Anonymous
21
 <b> <I>
Hey there !!

→ Prove that :-)

 \bf {a}^{3} + {b}^{3} + {c}^{3} - 3abc = \frac{1}{2} (a + b + c)( {(a - b) }^{2} + {(b - c)}^{2} + {(c - a)}^{2} ).

→ solution :-)

Using Identity :-

=> a³ + b³ + c³ - 3abc = ( a + b + c )( a² + b² + c² -ab - bc - ca ).

▶ We can write RHS in this form :-

 \bf = \frac{1}{2} (a + b + c)(2 {a}^{2} + 2 {b}^{2} + 2 {c}^{2} - 2ab - 2bc - 2ca).

____________________________________

➡ Because ,  \bf = \frac{1}{\cancel{2}} (a + b + c)  \times  \cancel{2} ( {a}^{2} + {b}^{2} + {c}^{2} - ab - bc - ca).

= ( a + b + c )( a² + b² + c² -ab - bc - ca ).

____________________________________

 \bf = \frac{1}{2} (a + b + c)( {a}^{2} + {a}^{2} + {b}^{2} + {b}^{2} + {c}^{2} + {c}^{2} - 2ab - 2bc - 2ca).

=  \bf{ \frac{1}{2} } ( a + b + c ) [ ( a² - 2ab + b² ) + ( b² - 2bc + c² ) + ( c² - 2ca + a² ) ].

 \bf { {a}^{3} + {b}^{3} + {c}^{3} - 3abc = \frac{1}{2} (a + b + c)( {(a - b) }^{2} + {(b - c)}^{2} + {(c - a)}^{2} ). }

✔✔ Hence, it is proved ✅✅.

____________________________________

 \huge \boxed{ \mathbb{THANKS}}

 \huge \bf{ \#BeBrainly.}

tapdiyaunnati: Thanks it is very helpful
Similar questions