prove that A(8,-10) ,B(7,-3) and C(0,-4) are the vertices of the right angled triangle
Answers
Answer:
Let, the points are A (8, -10), B (7, -3) and C (0, -4)
• AB = \sqrt{(8-7)^{2}+(-10+3)^{2}}
(8−7)
2
+(−10+3)
2
units
=\sqrt{1^{2}+7^{2}}=
1
2
+7
2
units
=\sqrt{1+49}=
1+49
units
=\sqrt{50}=
50
units
• BC = \sqrt{(7-0)^{2}+(-3+4)^{2}}
(7−0)
2
+(−3+4)
2
units
=\sqrt{7^{2}+1^{2}}=
7
2
+1
2
units
=\sqrt{49+1}=
49+1
units
=\sqrt{50}=
50
units
• CA = \sqrt{(0-8)^{2}+(-4+10)^{2}}
(0−8)
2
+(−4+10)
2
units
=\sqrt{8^{2}+6^{2}}=
8
2
+6
2
units
=\sqrt{64+36}=
64+36
units
=\sqrt{100}=
100
units
We see that, AB^{2}+BC^{2}=CA^{2}AB
2
+BC
2
=CA
2
where (\sqrt{50})^{2}+(\sqrt{50})^{2}=(\sqrt{100})^{2}(
50
)
2
+(
50
)
2
=(
100
)
2
By Pythagorian theorem, we can say that the triangle ABC is a right angled triangle.
Hence, proved.
Step-by-step explanation:
Hope it helps.
Step-by-step explanation:
let A(8 , -10) , B(7,-3 ) ,c (0 , -4)
( AB) distance =
(BC) distance =
and (AC ) =
so, hence proved
as. , AB +BC =AC