Math, asked by shaun5, 1 year ago

Prove that a+(a+d)+(a+2d)+........upto n times =n/2[2a+(n-1)d]

Answers

Answered by CR7Legend
2
LHS= a + (a+d)+ (a+2d)...n
RHS=n/2[2a+(n-1)d]
Basic step :
For n=1 , LHS = a
RHS=1/2[2a]=a ....... (true)
For n=k , LHS = a+ (a+d) + (a+2d) + .... (a+kd)
RHS=k/2[2a+(k-1)d]=k/2[2a+kd-d]

To obtain the (k+1)th term , we add (k+1) to both sides of the equation.
LHS= a+(a+d)...(a+kd)+(a+kd+d)

RHS= k/2[2a+kd-d]+a+kd+d
=ak+k2d/2-dk/2+a+kd+d
=1/2[2ak+k2d-dk+2a+2dk+2d]
=1/2[2ak+dk2+dk+d+d+a]

Answered by DMNS
4

\underline{\underline{\underline{\underline{\underline{\huge{\mathfrak{\blue{ Answer }}}}}}}}

Let ,

first term = a

common Difference = d

Number of terms = n

Thus ,

By formula is Sn ,

\tt{ Sn = \frac{n}{2} [ 2a + ( n - 1 ) d ] }

\underline{\underline{\underline{\underline{\underline{\huge{\mathfrak{\blue{ Plz }}}}}}}} \underline{\underline{\underline{\underline{\underline{\huge{\mathfrak{\blue{ Follow  }}}}}}}}

<marquee direction = "left"  bgcolor = "aqua"> Nice Dp ❤️❤️❤️

Similar questions