Math, asked by staycoolandrelaxchil, 9 months ago

Prove that: (a + b)-1 (a-1 + b-1) = (ab)-1.​

Answers

Answered by surpreettampet
18

Answer:

answer

Step-by-step explanation:

here. is your answers

Attachments:
Answered by payalchatterje
12

Answer:

Given,

 {(a + b)}^{ - 1} ( {a}^{ - 1}  +  {b}^{ - 1})

This is a problem of Algebra,

 {(a + b)}^{ - 1} ( {a}^{ - 1}  +  {b}^{ - 1})  =  \frac{1}{a + b} ( \frac{1}{a}  +  \frac{1}{b} )

 =  \frac{1}{(a + b)} ( \frac{b + a}{ab} )

 =  \frac{1}{ab}

 =  {(ab)}^{ - 1}

Therefore,

 {(a + b)}^{ - 1} ( {a}^{ - 1}  +  {b}^{ - 1})  =  {(ab)}^{ - 1}

[proved]

Some extra formulas of Algebra,

1.(a + b)² = a² + 2ab + b²

2.(a − b)² = a² − 2ab − b²

3.(a + b)³ = a³ + 3a²b + 3ab² + b³

4.(a - b)³ = a³ - 3a²b + 3ab² - b³

5.(a³ + b³) = (a + b)³ − 3ab(a + b)

6.(a³ - b³)= (a -b)³ + 3ab(a - b)

7.{a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\ 8.{a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\ 9.{a}^{2}  +  {b}^{2}  =  {(a - b)}^{2}  + 2ab \\ 10.{a}^{3}  -  {b}^{3}  = (a  -  b)( {a}^{2}   +  ab +  {b}^{2} ) \\ 11.{a}^{3}   +   {b}^{3}  = (a + b)( {a}^{2}    -   ab +  {b}^{2} )

Similar questions