prove that (a+b)^2 / 4ab = sin^2 x is only possible only when a = b
Answers
Answered by
1
(a+b) = sqrt(a^2+b^2+2ab)
(a-b) = sqrt(a^2+b^2-2ab)
Let x = (a+b)/(a-b)
=> x^2 = (a^2+b^2+2ab)/(a^2+b^2-2ab)
=> x^2 = (4ab+2ab)/(4ab-2ab)
=> x^2 = 3
=> x = sqrt(3).
(a+b)/(a-b)= sqrt(3)
Similar questions