Math, asked by ashunigam42, 6 months ago

prove that (a-b)³=a³-b³-3a²b+3a²b​

Answers

Answered by BrainlyPopularman
18

Correct Question :

Prove that (a-b)³=a³-b³-3a²b+3ab².

ANSWER :

TO PROVE :

 \\  \bf \longrightarrow {(a - b)}^{3} =  {a}^{3} -  {b}^{3} - 3 {a}^{2} b + 3a {b}^{2}  \\

SOLUTION :

• Let's take L.H.S. –

 \\  \bf \: \:= \: \:  {(a - b)}^{3} \\

• We should write this as –

 \\  \bf \: \:= \: \:(a - b)(a - b)(a - b) \\

 \\  \bf \: \:= \: \:\underbrace{[(a - b)(a - b)]}(a - b) \\

 \\  \bf \: \:= \: \:( {a}^{2} - ab - ab +  {b}^{2})(a - b) \\

 \\  \bf \: \:= \: \:( {a}^{2} - 2ab +{b}^{2})(a - b) \\

 \\  \bf \: \:= \: \:(a - b)( {a}^{2} - 2ab +{b}^{2}) \\

 \\  \bf \: \:= \: \:a( {a}^{2} - 2ab +{b}^{2})- b({a}^{2} - 2ab +{b}^{2}) \\

 \\  \bf \: \:= \: \: {a}^{3}  - 2 {a}^{2}b + a {b}^{2} -  {a}^{2}b + 2a {b}^{2} -  {b}^{3}\\

 \\  \bf \: \:= \: \: {a}^{3}  - 3 {a}^{2}b + 3a {b}^{2}-  {b}^{3}\\

 \\  \bf \: \:= \: \: {a}^{3}-  {b}^{3}  - 3 {a}^{2}b + 3a {b}^{2}\\

 \\  \bf \: \:= \: \: R.H.S.\\

 \\ \large \longrightarrow { \boxed{\bf Hence \:  \: Proved}}\\

Answered by Anonymous
72

Correct question

★ Prove that (a - b)³ = a³ - b³ - 3a²b + 3ab²

Solution

Taking L.H.S

→ (a - b)³

→ (a - b)(a - b)(a - b)

→ [(a - b)(a - b)](a - b)

→ [a² - ab - ab + b²](a - b)

→ (a - b)(a² -2ab + b²)

→ a × (a² -2ab + b²) - b × (a² -2ab + b²)

→ a³ - 2a²b + ab² - ba² + 2ab² - b³

→ a³ - b³ - (2a²b + a²b) + (2ab² + ab²)

→ a³ - b³ - 3a²b + 3ab²

⟹ R.H.S

⟹ L.H.S = R.H.S

Hence proved

Similar questions