Math, asked by dexter7622, 1 year ago

prove that (a-b)3=a3-b3-3a2b+3ab2=a3-b3-3ab(a-b)

Answers

Answered by pankaj12je
14
Hey there !!!!!!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(a - b) (a - b) (a - b) = (a - b)³ 

or, (a - b) (a - b) (a - b) = (a - b) (a - b)² 

                                   = (a – b) (a² + b² - 2ab),
                                   [Using the formula of (a-b)² = a - 2ab + b²]

                                   = a (a² + b² – 2ab) – b (a² + b² – 2ab) 

                                   = a³ + ab² – 2a²b – ba² – b³ + 2ab² 

                                   = a³ – 3a²b + 3ab² – b³

                                  =  a³-b³-3ab(a-b)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hope this helped you...............
Answered by Anonymous
13
Hello dear

Here is you're answer

====================================

given us

that

( a - b )³

= ( a - b ) { ( a - b )² }

= ( a - b ) { a² - 2ab + b² }

= a ( a² - 2ab + b² ) - b ( a² - 2ab + b² )

= a³ - 2a²b + ab² - ab² + 2ab² - b³

= a³ - b³ - 2a²b - ab² + 2ab² + ab²

= a³ - b³ - 3a²b + 3ab²

= a³ - b³ - 3ab ( a + b ) { using common }

thanks

====================================
Similar questions