Prove that: (a+b)^3 + (b+c)^3 + (c+a)^3 - 3(a+b)(b+c)(c+a) = 2(a^3 + b^3 + c^3 - 3abc)
Answers
Answered by
2
=2a^3+2b^3+2c^3+3ab(a+b)+3bc(b+c)+3ac(a+c)-3(a+b)(b+c)(c+a)
=2(a^3+b^3+c^3)+3(ab(a+b)+bc(b+c)+ca(c+a))-3(a+b)(b+c)(c+a)
=2(a^3 + b^3 + c^3 - 3abc)
=2(a^3+b^3+c^3)+3(ab(a+b)+bc(b+c)+ca(c+a))-3(a+b)(b+c)(c+a)
=2(a^3 + b^3 + c^3 - 3abc)
Answered by
6
Step-by-step explanation:
your answer is in the above attachment
Attachments:
Similar questions
Social Sciences,
8 months ago
Science,
1 year ago
Computer Science,
1 year ago
Environmental Sciences,
1 year ago