prove that a+b=45° then(cotA-1)(cotB-1)=2
Answers
Answered by
205
Cot (A+B) = (CotACotB-1)/(CotA + CotB
)
We know......Cot(45)=1
so, 1=(CotACotB-1)/(CotA + CotB )
CotACotB-1)= (CotA + CotB )
CotACotB-cotA-cotB=1
adding 1 to both sides.....we get
(cotA-1)(cotB-1)=2......proved
We know......Cot(45)=1
so, 1=(CotACotB-1)/(CotA + CotB )
CotACotB-1)= (CotA + CotB )
CotACotB-cotA-cotB=1
adding 1 to both sides.....we get
(cotA-1)(cotB-1)=2......proved
Answered by
0
Answer:
We use trigonmetric identities to prove this result.
Step-by-step explanation:
- Basic trigonmetric identities used:
- Now,we proceed with the proof .
- Using (1),we have
.
- Next,we put,A+B=45°,i.e.,cot(A+B)=1 .
- We get,
Thus,we are done.
Similar questions