prove that (a+b+c)² - (a-b-c)² + 4b² - 4c² = (4b+4c)(a+b-c)
please solve this as soon as possible
Answers
Answered by
11
Step-by-step explanation:
We have:
(a + b + c)² - (a - b - c)² + 4b² - 4c²
To prove:
(a + b + c)² - (a - b - c)² + 4b² - 4c² = (4b + 4c)(a + b - c)
Solution:
We see:
- (a + b + c)² - (a - b - c)²
- 4b² - 4c²
We know:
- a² - b² = (a + b)(a - b)
Hence:
- (a + b + c + a - b - c)(a + b + c - a + b + c) + 4(b + c)(b - c)
- (2a)(2b + 2c) + 4(b + c)(b - c)
- 4a(b + c) + 4(b + c)(b - c)
- 4(b + c)(a + b - c)
- 4(b + c)(a + b - c)
Therefore:
(a + b + c)² - (a - b - c)² + 4b² - 4c² = (4b + 4c)(a + b - c)
L.H.S = R.H.S
Similar questions