Math, asked by ruhi8511, 3 days ago

prove that (a+b+c)^2>3(ab+bc+ca)

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Without loss of inequality, assume that

\rm :\longmapsto\:a \:   =  \: b \:   =  \: c

Then,

\rm :\longmapsto\: {(a + a + a)}^{2} { > } \:  3({a}^{2} +  {a}^{2}  +  {a}^{2})

\rm :\longmapsto\: {(3a)}^{2} { > } \:  9{a}^{2}

\rm :\longmapsto\: {9a}^{2} { > } \:  9{a}^{2}

Which is not true.

\bf\implies \:\:a \:  \ne \: b \:  \ne \: c

We know that

\rm :\longmapsto\: {(a + b + c)}^{2} =  {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca)

So, this can be rewritten as

\rm :\longmapsto\:   {a}^{2} +  {b}^{2} +  {c}^{2}  =  {(a + b + c)}^{2} -  2(ab + bc + ca) -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:   {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca

can be rewritten as

\rm \:  =  \:  \: \dfrac{1}{2}(2{a}^{2} + 2 {b}^{2} +2  {c}^{2} - 2ab -2 bc - 2ca)

\rm \: =\dfrac{1}{2}({a}^{2} +  {a}^{2}  +  {b}^{2} +  {b}^{2}  +{c}^{2} +  {c}^{2}  - 2ab -2 bc - 2ca)

\rm \:  = \dfrac{1}{2}\bigg(( {a}^{2} +  {b}^{2} - 2ab) + ( {b}^{2} +  {c}^{2} - 2bc) + ( {c}^{2} +  {a}^{2} - 2ac)\bigg)

\rm \:  = \dfrac{1}{2}\bigg( {(a - b)}^{2} +  {(b - c)}^{2} +  {(c - a)}^{2}\bigg)

As sum of squares can never be negative, and a, b, c are distinct,

\bf\implies \:   {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca > 0

\bf\implies \:   {a}^{2} +  {b}^{2} +  {c}^{2}  >  ab  + bc  +  ca

Now, On substituting the value from equation (1), we get

\bf\implies \: {(a + b + c)}^{2} - 2(ab  + bc + ca)>  ab  + bc  +  ca

\bf\implies \: {(a + b + c)}^{2} > 2(ab  +  bc + ca) +  ab  + bc  +  ca

\bf\implies \: {(a + b + c)}^{2} > 3(ab  +  bc + ca)

Hence, Proved

Similar questions