Prove that :
(a + b + c)^3 - a^3 - b^3 - c^3 = 3(a + b)(b+c)(c+a)
Answers
Answered by
1
Answer:
answer is one.
hope it help
Answered by
3
Question:
Prove that :
(a + b + c)³ - a³ - b³ - c³ = 3(a + b)(b+c)(c+a)
Answer:
(a+b+c)³-a³-b³-c³ = 3(a + b)(b+c)(c+a)
Left hand side:
[ (a+b+c)³-a³-b³-c³ ]
= [ (a+b+c)³-a³ ] - (b³+c³)
= (a + b + c - a) [ (a + b + c)^2 + a^2 + a(a + b + c) - [(b+c) (b^2 + c^2 - bc)]
[we know that (a^3 + b^3) = (a+b) (a² + b² - ab) and (a^3 - b^3) = (a-b) (a² + b² + ab) ]
= (b+c) (a² + b² + c² + 2ab + 2bc + 2ca + a² + a² + ab + ac) - (b+c)( c² + b² - bc)
= (b+c) ( b² + c² - b² - c² + 3a² + 3ab + 3ac + 3bc)
= 3(b+c) a(a+b) + c(a+b)
= 3(a + b) (b+c) (c+a) (RHS proved)
Similar questions