Prove that (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)
Answers
Answered by
2
Proof + Step by step explanation:
LHS:
=(a+b+c)^3-a^3-b^3-c^3
={(a+b)+c}^3- a^3-b^3-c^3
=(a+b)^3+c^3+3c(a+b)(a+b+c)-a^3-b^3-c^3 =a^3+b^3+c^3+3ab(a+b)+3c(a+b)(a+b+c)-a^3-b^3-c^3=3ab(a+b)+3c(a+b)(a+b+c)=3(a+b){ab+c(a+b+c)}=3(a+b){ab+ac+bc+c^3}=3(a+b){a(b+c)+c(b+c)} =3(a+b)(b+c)(c+a)
Hence proved
Answered by
18
Step-by-step explanation:
=(a+b+c)^3-a^3-b^3-c^3
=((a+b)+c}^3- a^3-b^3-c^3
=(a+b)^3+c^3+3c(a+b)(a+b+c)-a^3-b^3-c^3 =a^3+b^3+c^3+3ab(a+b)+3c(a+(a+b+c)-a^3-b^3-c^3
=3ab(a+b)+3c(a+b) (a+b+c)=3(a+b){ab+c(a+b+c)}
=3(a+b) {ab+ac+bc+c^3}=3(a+b){a(b+c)+c(b+c)}
=3(a+b)(b+c)(c+a)
Similar questions