Prove That (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)
Answers
Answered by
0
Answer:
Consider:
(a+b+c)3 - a3-b3-c3 = [(a+b)+c]3 – a3-b3-c3
(a+b)3+c3+3c(a+b)(a+b+c)-a3-b3-c3
A3+b3+3ab(a+b)+c3+3c(a+b)(a+b+c)-a3-b3-c3
A3+b3+c3+3ab(a+b)+3c(a+b)(a+b+c)-a3-b3-c3
3ab(a+b)+3c(a+b)(a+b+c) 3(a+b)[ab+c(a+b+c)]
3(a+b)[ab+ac+bc+c2] 3(a+b)[a(b+c)+c(b+c)]
3(a+b)(b+c)(c+a)
Hence Proved.
Read more on Brainly.in - https://brainly.in/question/1212558#readmore (please mark me Brainlist)
Similar questions