Prove that: (a+b+c)³ = a³+b³+c³+3(a+b)(b+c)(a+c).
Answers
Answered by
1
Answer:
(a+b+c)³=a³+b³+c³+3(a+b)(b+c)(c+a)
we can derive the formulae as following,
(a+b+c)³
=[(a+b)+c]³
=(a+b)³+c³+3(a+b)c[(a+b)+c]
=a³+b³+3ab(a+b)+c³+3(a+b)c[a+b+c]
=a³+b³+c³+3ab(a+b)+3ca(a+b)+3bc(a+b)+3c²(a+b)
=a³+b³+c³+3(a+b)[ab+bc+ca+c²]
=a³+b³+c³+3(a+b)[b(a+c)+c(a+c)]
=a³+b³+c³+3(a+b)(c+a)(b+c)
=a³+b³+c³+3(a+b)(b+c)(c+a)
please drop some ❤❤❤
Step-by-step explanation:
please f-o-l-l-o-w m-e
Answered by
0
please see to the attachment
Attachments:
Similar questions