Math, asked by rajaramdeo12, 7 months ago

Prove that (a + b + c)3 - a3- b3 -c3= 3(a + b)(b + c)(c + a).​

Answers

Answered by prabhatraiazm
2

Answer:

ANSWER

L.H.S

=

(a−b)(a−c)

a

3

(b+c)

+

(b−c)(b−a)

b

3

(c+a)

+

(c−a)(c−b)

c

3

(a+b)

=

(a−b)(a−c)(b−c)

a

3

(b+c)(b−c)

+

(b−c)(b−a)(c−a)

b

3

(c+a)(c−a)

+

(c−a)(c−b)(a−b)

c

3

(a+b)(a−b)

(a−b)(b−c)(c−a)

−(a

3

b

2

−a

3

c

2

+b

3

c

2

−b

3

a

2

+c

3

a

2

−c

3

b

2

)

(a−b)(b−c)(c−a)

−(a

3

b

2

−b

3

a

2

+b

3

c

2

−a

3

c

2

+c

3

a

2

−c

3

b

2

)

(a−b)(b−c)(c−a)

−(a

2

b

2

(a−b)−c

3

(a

3

−b

3

)−c

3

(a

2

−b

2

))

(a−b)(b−c)(c−a)

(a−b)(c

2

(a

2

+b

2

+ab)−a

2

b

2

−c

3

(a+b))

=(a−b)

(a−b)(b−c)(c−a)

a

2

c

2

+c

2

b

2

+abc

2

−a

2

b

2

+ac

3

−bc

3

=(a−b)

(a−b)(b−c)(c−a)

a

2

c

2

−a

2

b

2

+b

2

c

2

−bc

3

+abc

2

−ac

3

=(a−b)

(a−b)(b−c)(c−a)

−a

2

(b

2

−c

2

)+bc

2

(b−c)+ac

2

(b−c)

=(a−b)(b−c)

(a−b)(b−c)(c−a)

−a

2

b−a

2

c+bc

2

+ac

2

=(a−b)(b−c)

(a−b)(b−c)(c−a)

−a

2

b+b

2

c−ac

2

+ac

2

=(a−b)(b−c)(c−a)

(a−b)(b−c)(c−a)

bc+ac+ab

=bc+ca+ab

R.H.S

Similar questions