prove that(a+b+c)³ -a³-b³-c³ =3 (a+b) (b+c) (c+a)
Answers
Answered by
2
Answer:
LHS
(a+b+c) ^3=a^3+b^3+c^3+3(a+b) (b+c) (c+a)
sub this
~~a^3+b^3+c^3+3(a+b) (b+c) (c+a) -a^3-b^3-c^3
~~3(a+b) (b+c) (c+a)
==RHS
Answered by
1
Step-by-step explanation:
a3+b3+c3+ 3(a+b)(b+c)(c+a) - a3 -b3 -c3
=3(a+b) (b+c) (c+a)
Similar questions