prove that (a+b+c)^333 - a^333 -b^333 -c^333 is divisible by (a+b+c)^3-a^3-b^3-c^3
Answers
Answered by
1
i cant but i can prove this
23552 = 28∗33∗112∗13gcd(92928, 123552) x lcm(92928,123552)=92928x123552gcd(92928, 123552) x lcm(92928,123552)=(25∗3∗11)(28∗33∗112∗13)gcd(92928, 123552) x lcm(92928,123552)=(25∗33∗11∗13)(28∗3∗112)gcd(92928, 123552) x lcm(92928,123552)=92928x123552Section 4.51b. 183211232 [h(183211232)=183211232 mod 97] = 573a. 317, 918, 007, 100, 111, 310317 = 7 (mod31)918 = 19 mod31007 = 7 mod31100 = 7 mod31111 = 18 mod31310 = 0 mod313b.
Similar questions