PROVE THAT a∩(b-c)=(a∩b)-(a∩c)
Answers
Answered by
3
Solutions:
⇒ Assume
a= {1,2,3,4,5}
b= {3,4,5,6,7}
c= {6,7,8,9}
LHS= a ∩(b-c) b-c= {3,4,5,6,7}-{6,7,8,9} b-c= {3,4,5} a ∩ (b-c)= {1,2,3,4,5} ∩{3,4,5}
= {3,4,5} (a∩b)- (a∩c)=∩{3,4,5} (a∩b)={1,2,3,4,5,}∩ {3,4,5,6,7} = {3,4,5}
a∩c= {1,2,3,4,5}∩{6,7,8,9} = {0} so - 2 (a∩b)-(a∩c) ={3,4,5}-{0} from 1
and 3 we get a∩(b-c)= (a∩b)-(a∩c) = {3,4,5}
⇒ Assume
a= {1,2,3,4,5}
b= {3,4,5,6,7}
c= {6,7,8,9}
LHS= a ∩(b-c) b-c= {3,4,5,6,7}-{6,7,8,9} b-c= {3,4,5} a ∩ (b-c)= {1,2,3,4,5} ∩{3,4,5}
= {3,4,5} (a∩b)- (a∩c)=∩{3,4,5} (a∩b)={1,2,3,4,5,}∩ {3,4,5,6,7} = {3,4,5}
a∩c= {1,2,3,4,5}∩{6,7,8,9} = {0} so - 2 (a∩b)-(a∩c) ={3,4,5}-{0} from 1
and 3 we get a∩(b-c)= (a∩b)-(a∩c) = {3,4,5}
Answered by
0
Answer:
• Let x be an arbitrary element in A ∩ (B-C)
↠ x ∈ A and x ∈ (B-C)
↠ x ∈ A, and x ∈ B and x ∉ C
In either case, this implies x ∈ (A and B) but x ∉ (A and C)
↠ x ∈ (A∩B) - (A∩C)
Hence, A ∩(B-C) ⊂ (A∩B) - (A∩C) — (1)
• Again let y be an arbitrary element in (A∩B) - (A∩C)
↠ y ∈(A∩B) but y ∉ (A∩C)
↠ y ∈A, and y ∈ B but y ∈ A and y ∉ C
↠ y ∈ A ∩(B-C)
So, (A∩B) - (A∩C) ⊂ A ∩(B-C) — (2)
∴ A ∩(B-C) = (A∩B) - (A∩C)
Similar questions