Physics, asked by priyabratomkumar, 9 months ago

prove that|a+b|>=||a|+|b||​

Answers

Answered by shadowsabers03
0

\displaystyle\longrightarrow\bf{|a+b|}=\sf{\sqrt{a^2+b^2+2ab\cos\theta}}

\displaystyle\longrightarrow\bf{|a|+|b|}=\sf{\sqrt{a^2+b^2+2ab}}

Assume that,

\displaystyle\longrightarrow\bf{|a+b|\geq|a|+|b|}\quad\quad\sf{\dots(1)}

\displaystyle\longrightarrow\sf{\sqrt{a^2+b^2+2ab\cos\theta}\geq\sqrt{a^2+b^2+2ab}}

\displaystyle\longrightarrow\sf{a^2+b^2+2ab\cos\theta\geq a^2+b^2+2ab}

\displaystyle\longrightarrow\sf{\cos\theta\geq1}

But \displaystyle\sf{-1\leq\cos\theta\leq1.}

Hence our assumption is contradicted and thus disproved.

Besides,

\displaystyle\longrightarrow\bf{|a+b|\leq|a|+|b|}

QED

Similar questions