Prove that a+c=2a, if the roots of the equation (b-c P+(c-a)x+(a-b),are equal
Answers
Answered by
1
Answer:
If roots of a quadratic equation are equal, then discriminant of the quadratic equation is 0
D=b2−4ac=0
(b−c)x2+(c−a)x+(a−b)=0
Comparing with
ax2+bx+c=0
Here, a=(b−c), b=(c−a) and c=(a−b)
So,
⇒(c−a)2−4(b−c)(a−b)=0
⇒c2+a2−2ac−4(ab−b2−ac+bc)=0
⇒c2+a2−2ac−4ab+4b2+4ac−4bc=0
⇒c2+a2+2ac+4b2−4ab−4bc=0
⇒(c+a)2+4b2−4b(a+c)=0
⇒(c+a)2+(2b)2−2(c+a)(2b)=0
⇒[(c+a)−(2b)]2=0
⇒c+a−2b=0
⇒2b=c+a
Similar questions
English,
1 month ago
Math,
1 month ago
India Languages,
1 month ago
Social Sciences,
3 months ago
Chemistry,
3 months ago
Science,
10 months ago
Science,
10 months ago
Science,
10 months ago