Prove that a cosB - b sinB = √a^2+b^2-c^2, when a sinB + b sinB = c.
I know it's too hard.
Answers
Answered by
21
Solution:
It is given that
Squaring both sides,
Hence, it is proved.
It is given that
Squaring both sides,
Hence, it is proved.
sprao534:
wrong
Answered by
17
Error :-
→ It will be a sinB + b cosB = c , instead of a sinB + b sinB = c .
Given :-
→ a sinB + b cosB = c .......(1) .
Now,
→ ( a sinB + b cosB )² + ( a cosB - b sinB )² .
= a²sin²B + b²cos²B + 2a sinB b cosB + a²cos²B + b²sin²B - 2a sinB b cosB .
= a²sin²B + a²cos²B + b²cos²B + b²sin²B .
= a²( sin²B + cos²B ) + b²( cos²B + sin²B ) .
= a² + b² . [ ∵ sin²B + cos²B = 1 ] .
Thus, ( a sinB + b cosB )² + ( a cosB - b sinB )² = ( a² + b² ) .
⇒ c² + ( a cosB - b sinB )² = ( a² + b² ) .
⇒ ( a cosB - b sinB )² = ( a² + b² - c² ) .
⇒ ( a cosB - b sinB ) = √( a² + b² - c² ) .
Hence,
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago
World Languages,
1 year ago