Math, asked by shailuparekh1, 5 months ago

Prove that a cyclic parallelogram is a rectangle.

Answers

Answered by ᏞovingHeart
157

Lets solve it !!

Prove that a cyclic parallelogram is a rectangle.

Given;

Let ABCD be a cyclic parallelogram.

To Prove;

ABCD is a rectangle.

Proof;

A rectangle is a parallelogram with one angle 90°, so we have to prove angle 90°.

Since ABCD is a parallelogram.

 \sf{\angle A = \angle C} -  -  \boxed{ \sf{ \orange{(opposite \: angles \: of \: parallelogram \: are \: equal)}}} ......(1)

In cyclic parallelogram ABCD

\sf{\angle A + \angle C = 180°} \\ \sf{\angle A + \angle A = 180°} \\ \sf{2 \angle A = 180°} \\

\sf{\angle A = \cancel\frac{180}{2} = 90}  -  -  - \boxed{ \sf{ \orange{(sum \: of \: opposite \: angles \: of \: a \: cyclic \:  \: quadrilateral \: is \: 180 \degree)}}} ......from \: 1

So, ABCD is a parallelogram with one angle 90°.

Hence, ABCD is a rectangle.

________________

And we are done! :D

Answered by sara122
62

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

Here , as the given query asked to prove that a cyclic parallelogram is a rectangle . Let us consider a cyclic parallelogram whose angles are A ,B , C ,D . The diagram is given in the attachment which is created by me & not from any sources . Let us proved it .

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

  \\ \huge\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: solution\mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

We know that,

  • Opposite angles of parallelogram are equal.

This means ➲

\large \tt\blue➦  ∠A    \red\longrightarrow  ∠C  \\  \\ \large \tt\blue➦   ∠B   \red\longrightarrow ∠D

  • Sum of the opposite angles if a cyclic quadrilateral is 180°

This means ➲

\large \tt\blue➦   ∠A \:  + ∠C  = 180°  .........(equation \: 1)

 \\  \\

 \large \tt \: from \: equation \: (1), \\  \\ \large \tt\blue➦  ∠A  +   ∠C  = 180°   \\  \\ \large \tt\blue➦  ∠ A  + ∠A = 180°  \\  \\ \large \tt\blue➦ 2 ∠A = 180°   \\  \\ \large \tt\blue➦   ∠ A =  \frac{ \cancel{180°  }} {\cancel{2} } \\  \\ \large \tt\blue➦  ∠ A = 90°   \\  \\

  \huge\sf {\underline{ \underline \color{darkgreen}{proved}}} \huge ✔

 \large \therefore  \bf\: ABCD \: is \: a \: rectangle

Attachments:
Similar questions