Math, asked by kumartanishq, 5 months ago

Prove that a diameter is the largest chord in a circle.
This question is of chapter 10 circle class 9.​

Answers

Answered by dkhs
1

Let us consider two congruent circles (circles of same radius) with centres as O and O'.

In ΔAOB and ΔCO'D,

∠AOB = ∠CO'D (Given)

OA = O'C (Radii of congruent circles)

OB = O'D (Radii of congruent circles)

∴ ΔAOB ≅ ΔCO'D (SAS congruence rule)

⇒ AB = CD (By CPCT)

Hence, if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Similar questions