prove that a line drawn through the mid point of one side of a triangle parellel to another side bisects the third side
Answers
Answered by
5
I hope this is helpful
Attachments:
Answered by
1
Given,In triangle ABC, D is the midpoint of AB such that AD=DB.
A line parallel to BC intersects AC at E as shown in above figure such that DE||BC.
To prove, E is the midpoint of AC.
Since, D is the midpoint of AB
So,AD=DB
β AD/DB=1.....................(i)
In triangle ABC,DE||BC,
By using basic proportionality theorem,
Therefore, AD/DB=AE/EC
From equation 1,we can write,
β 1=AE/EC
So,AE=EC
Hence, proved,E is the midpoint of AC.
Attachments:
Similar questions
Social Sciences,
8 months ago
Physics,
1 year ago
Math,
1 year ago
Math,
1 year ago
Geography,
1 year ago