prove
that a log (x+y) = 3 log
If x² + y² - asxy , then
3+ logx + logy .
Alma
Answers
Answered by
0
Answer:
Answer:x
Answer:x 2
Answer:x 2 +y
Answer:x 2 +y 2
Answer:x 2 +y 2 =25xy....(1)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy=3log3+logx+logy
Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy=3log3+logx+logy=R.H.S
please mark as brainleist
Answered by
0
Answer:
hk Vu hchchvvvjjbjbjbhvbbjbjb
Similar questions