Math, asked by yembetiindhu, 1 month ago

prove
that a log (x+y) = 3 log
If x² + y² - asxy , then
3+ logx + logy .
Alma​

Answers

Answered by thakurchanchal169
0

Answer:

Answer:x

Answer:x 2

Answer:x 2 +y

Answer:x 2 +y 2

Answer:x 2 +y 2 =25xy....(1)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy=3log3+logx+logy

Answer:x 2 +y 2 =25xy....(1)L.H.S=2log(x+y)=log(x+y) 2 =log(x 2 +y 2 +2xy)=log(25xy+2xy) [ from (1)]=log(27xy)=log(3 3 xy)=log3 3 +logx+logy=3log3+logx+logy=R.H.S

please mark as brainleist

Answered by premprempeyarelal80
0

Answer:

hk Vu hchchvvvjjbjbjbhvbbjbjb

Similar questions