Math, asked by hyugh85, 1 year ago

prove that

a Sin (B - C) + b Sin (C - A) + c Sin (A - B) = 0

Answers

Answered by Swarnimkumar22
9
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

prove that

a Sin (B - C) + b Sin (C - A) + c Sin (A - B) = 0


\bold{\underline{Answer-}}

let \:  \:  \:  \frac{a}{sin \: A}  =  \frac{b}{sin \: B}  =  \frac{c}{sin \: C}  = k


Now,

a \:  = k \: sin  \: A \\ b = k \: sin \: B \\ c = k \: sin \: C


LHS, =


 = k[sin \: A \: sin \: (B - C) + sin \:B \: sin \: (C - A ) + sin \: C \: sin \: (A - B)] \\  \\  \\  = k[sin \: (B  +  C)sin \: (B - C) \:  +  \: sin \: (C  +  A) \: sin \:( C - A) +  sin \: (A  +  B) \: sin \: (A - B)]  \\  \\  \\  \\  = k[( {sin}^{2} B  -  {sin}^{2}  C) + ( {sin}^{2} C  -  {sin}^{2} A) + ( {sin}^{2} A -  {sin}^{2} B)]  \\  \\  \\  \\  = k \times 0 = 0



LHS = RHS



Hence, proved






Answered by hasit654
2

Answer:


Step-by-step explanation:

Use sine formula ,


∴sinA = ak

sinB = bk

sinC = ck


Also sin(A - B) = sinA.cosB - cosA.sinB

= akcosB - cosA.bk

= K(acosB - bcosA}


Similarly, sin(B - C) = k(bcosC - ccosB)

sin(C - A) = k(ccosA - acosC)


LHS = asin(B- C) + bsin(C - A) + csin(A - B)

= ak(bcosC - ccosB) + bk(acosC - ccosA) + ck(acosB - bcosA)

= k(bccosA - bccosA) + k(accosB - accosB) + k(abcosC - abcosC)

= 0 + 0 + 0 = 0 = RHS

Similar questions