Math, asked by aryanbharadwaj5009, 1 month ago

Prove that:a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

From Laws of sine, we have,

\tt{\blue{\dfrac{sin(A)}{a}=\dfrac{sin(B)}{b}=\dfrac{sin(C)}{c}}}

Let

\sf{\dfrac{sin(A)}{a}=\dfrac{sin(B)}{b}=\dfrac{sin(C)}{c}=k}

\sf{\implies\,sin(A)=ak;\,\,\,\,sin(B)=bk;\,\,\,\,sin(C)=ck}

Now,

\sf{a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)}

\sf{=a(bk-ck)+b(ck-ak)+c(ak-bk)}

\sf{=abk-cck+bck-abk+ack-bck}

\sf{=0}

Similar questions