Math, asked by samanvitha10042004, 9 months ago

Prove that a square + b square minus c square by c square + a square minus b square is equal to tan b by tanc​

Answers

Answered by MaheswariS
8

\underline{\textsf{To prove:}}

\textsf{In triangle ABC}

\mathsf{\dfrac{a^2+b^2-c^2}{c^2+a^2-b^2}=\dfrac{tanB}{tanC}}

\underline{\textsf{Solution:}}

\underline{\mathsf{Cosine\;formula:}}

\mathsf{In\;\triangle\;ABC}

\mathsf{cosA=\dfrac{b^2+c^2-a^2}{2bc}}

\mathsf{cosB=\dfrac{c^2+a^2-b^2}{2ca}}

\mathsf{cosC=\dfrac{a^2+b^2-c^2}{2ab}}

\underline{\mathsf{Sine\;formula}}

\mathsf{In\;\traingle\;ABC}

\mathsf{\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R}

\mathsf{Consider}

\mathsf{\dfrac{a^2+b^2-c^2}{c^2+a^2-b^2}}

\textsf{Using Cosine formula,}

\mathsf{=\dfrac{2ab\;cosC}{2ca\;cosB}}

\mathsf{=\dfrac{b\;cosC}{c\;cosB}}

\textsf{Using Sine formula,}

\mathsf{=\dfrac{2R\,sinB\;cosC}{2R\,sinC\;cosB}}

\mathsf{=\dfrac{sinB\;cosC}{sinC\;cosB}}

\mathsf{=\dfrac{sinB}{cosB}{\times}\dfrac{cosC}{sinC}}

\mathsf{=\dfrac{\dfrac{sinB}{cosB}}{\dfrac{sinC}{osC}}}

\mathsf{=\dfrac{tanB}{tanC}}

\implies\boxed{\mathsf{\dfrac{a^2+b^2-c^2}{c^2+a^2-b^2}=\dfrac{tanB}{tanC}}}

\underline{\textsf{Find more:}}

In a triangle ABC,if acosB=bcosA then the triangle is which triangle​

https://brainly.in/question/12199661

If in a triangle abc angle a=pi/6 and b:c=2:sqrt3, find angle b

https://brainly.in/question/18930261

Similar questions