prove that a square minus b square whole cube plus b square minus c square whole cube + c square minus A square hole cube equal to 3 a+ b* B + c * c plus a *a minus b * B minus c * c - a
Answers
Answered by
3
Answer:
(a + b)(b + c)(c + a)
Step-by-step explanation:
((a² - b²)³ + (b² - c²)³ + (c² - a²)³ ) / ((a - b)³ + (b-c)³ + (c - a)³)
Numerator
= (a² - b²)³ + (b² - c²)³ + (c² - a²)³
using the fact
if x+y+z = 0, then x³+y³+ z³ = 3 x y z
x = a² - b²
y = b² - c²
z = c² - a²
x + y + z = 0 ( as a² - b² +b² - c² + c² - a²) = 0
= 3 (a² - b²) (b² - c²) (c² - a²)
= 3 (a + b)(a - b)(b + c)(b-c)(c + a)(c-a)
similarly denominator =
((a - b)³ + (b-c)³ + (c - a)³) = 3(a-b)(b-c)(c-a)
as here x = a-b , y = b-c , z = c-a & x + y + z = 0
numerator/Denominator
= 3 (a + b)(a - b)(b + c)(b-c)(c + a)(c-a)/ 3(a-b)(b-c)(c-a)
= (a + b)(b + c)(c + a)
((a² - b²)³ + (b² - c²)³ + (c² - a²)³ ) / ((a - b)³ + (b-c)³ + (c - a)³) = (a + b)(b + c)(c + a)
Similar questions
English,
4 months ago
Computer Science,
4 months ago
Math,
9 months ago
Social Sciences,
9 months ago
Science,
1 year ago