Prove that : (a²- b²)³ + (b²- c²)³ + (c²- a²)³ = 3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)
It's a SA1 model question … Plz solve it…
Answers
Hey there!!
Given (a²-b²)³+(b²-c²)³+(c²-a²)³=3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)
Consider LHS:(a²-b²)³+(b²-c²)³+(c²-a²)³
If x + y + z =0 then x³ + y³+ z³ = 3xyz as,
Here x = a²-b², y = b²-c² and z = c²-a²
a²-b² + b²-c² + c²-a² = 0
Hence (a²-b²)³+(b²-c²)³+(c²-a²)³ = 3(a²-b²)(b²-c²)(c²-a²)³
= 3(a + b)(a − b)(b + c)(b − c)(c + a)(c − a)
= 3(a + b)(b + c)(c + a)(a − b)(b − c)(c − a)
∴ Hence proved
______________
Answer:
Step-by-step explanation:
Hey there!!
Given (a²-b²)³+(b²-c²)³+(c²-a²)³=3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)
Consider LHS:(a²-b²)³+(b²-c²)³+(c²-a²)³
If x + y + z =0 then x³ + y³+ z³ = 3xyz as,
Here x = a²-b², y = b²-c² and z = c²-a²
a²-b² + b²-c² + c²-a² = 0
Hence (a²-b²)³+(b²-c²)³+(c²-a²)³ = 3(a²-b²)(b²-c²)(c²-a²)³
= 3(a + b)(a − b)(b + c)(b − c)(c + a)(c − a)
= 3(a + b)(b + c)(c + a)(a − b)(b − c)(c − a)
∴ Hence proved