Math, asked by dumsjx4emx, 4 months ago

Prove that (a²+b²)(c²+d²) = (ac+bd)² + (a-bc)²

Answers

Answered by mptripathitripathi
2

Step-by-step explanation:

How can you prove that ? ... You evaluate the given numerical expression, (2-2)², by using the correct order of operations. ... Given: a²+b²= 2 and c²+d²=1 ... =(a^2+b^2)(d^2+c^2) , proved .

Answered by XxItzking18xX
3

Answer:

\huge\textbf{❥ᴀ᭄ɴsᴡᴇʀ}

  • How can I prove that (a2+b2)(c2+d2)=(ad−bc)2+(ac+bd)2?
  • You can use complex numbers to quickly solve this.

  • Use i2=−1

  • (a2+b2)(c2+d2)=[a2−(−b2)][c2−(−d2)]

  • ⟹ (a2+b2)(c2+d2)=[a2−(ib)2][c2−(id)2]

  • ⟹ (a2+b2)(c2+d2)=[(a−ib)(a+ib)][(c+id)(c−id]

  • ⟹ (a2+b2)(c2+d2)=[(a+ib)(c−id)][(a−ib)(c+id]

  • ⟹ (a2+b2)(c2+d2)=[ac+i(bc−ad)−i2bd)][ac−i(bc−ad)−i2bd]

  • ⟹ (a2+b2)(c2+d2)=[(ac+bd)+i(bc−ad)][(ac+bd)+i(bc−ad)]

  • ⟹ (a2+b2)(c2+d2)=[(ac+bd)2−i2(bc−ad)2]

  • ⟹ (a2+b2)(c2+d2)=(ac+bd)2+(bc−ad)2

  • ⟹ (a2+b2)(c2+d2)=(ad−bc)2+(ac+bd)2

\huge\purple\sf{\fbox{\fbox \purple{➳ᴹᴿ᭄ \: ąཞყąŋ}}}

Similar questions