prove that a³-b³=(a-b)(a²+ab+b²)
Answers
Answered by
0
Answer:
Step-by-step explanation:
(a-b)³
= (a-b)(a-b)(a-b)
=(a-b)(a²-ab-ab+b²)
=(a-b)(a²-2ab+b²)
= a³-2a²b+ab²-a²b+2ab²-b³
= a³- b³ - 3a²b + 3 ab²
= a³- b³ - 3ab(a-b)
That is
a³- b³ - 3ab(a-b) = (a-b)³
Thus,
a³- b³ = (a-b)³+ 3ab(a-b)
Again,
a³- b³
= (a-b)³+ 3ab(a-b)
= (a-b){(a-b)² + 3ab}
= (a-b)(a²-2ab+b²+3ab)
=(a-b)(a²+ab+b²)
So You can write a³- b³ = (a-b)³+ 3ab(a-b)
and also, a³- b³ =(a-b)(a²+ab+b²
Similar questions