prove that a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Answers
Answered by
15
Here is your answer...
Hope this will help you.....
Hope this will help you.....
Attachments:
Answered by
14
Answer:
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Step-by-step explanation:
RHS = (a+b+c)(a²+b²+c²-ab-bc-ca)
=a(a²+b²+c²-ab-bc-ca)+b(a²+b²+c²-ab-bc-ca)+c(a²+b²+c²-ab-bc-ca)
= a³+ab²+ac²-a²b-abc-ca²
+a²b+b³+bc²-ab²-b²c-abc
+a²c+b²c+c³-abc-bc²-c²a
/* after cancellation, we get
= a³+b³+c³-3abc
= LHS
Therefore,
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
•••♪
Similar questions