Math, asked by chotu1144, 1 year ago

prove that a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Answers

Answered by Shreya1001
15
Here is your answer...
Hope this will help you.....
Attachments:
Answered by mysticd
14

Answer:

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

Step-by-step explanation:

RHS = (a+b+c)(++-ab-bc-ca)

=a(a²+b²+c²-ab-bc-ca)+b(a²+b²+c²-ab-bc-ca)+c(a²+b²+c²-ab-bc-ca)

= +ab²+ac²-a²b-abc-ca²

+b++bc²-ab²-b²c-abc

+c+c+-abc-bc²-c²a

/* after cancellation, we get

= ++-3abc

= LHS

Therefore,

++-3abc=(a+b+c)(++-ab-bc-ca)

Similar questions