Prove that ∆ ABD ≅ ∆CBD. Find the values of x and y, if ∠ = 35°, ∠ = (3 + 5)°, ∠ = ( − 3)°, ∠ = 25°.
Answers
Answered by
1
Answer:
Given : In the figure AB = BC, AD = DC
∠ABD = 50, ∠ADB = y - 7°
∠CBD = x + 5°, ∠CDB = 38°
To find: The value of x and y
In △ABD and △CBD
BD = BD (common)
AB = BC (given)
AD = CD (given)
∴ △ABD ≅ △CBD (SSS axiom)
∴ ∠ABD = ∠CBD
=> 50 = x + 5° => x = 50° - 5 = 45°
and ∠ADB = ∠CDB
⇒ y - 7° = 38° ⇒ y = 38° + 7° = 45°
Hence x = 45°, y = 45°
Hope it will help you..
Similar questions
Accountancy,
2 months ago
Math,
2 months ago
History,
2 months ago
English,
9 months ago
English,
9 months ago