Math, asked by chaithanyak260, 1 year ago

prove that above question ​

Attachments:

Answers

Answered by Anonymous
2

Answer:

 \frac{cos \alpha }{(1 - tan \alpha) }  -  \frac{ {sin}^{2}  \alpha }{(sin \alpha  - cos \alpha )}   \\  \\  =  \frac{cos \alpha }{(1 -  \frac{sin \alpha }{cos \alpha } )}  -  \frac{ {sin}^{2} \alpha  }{(sin \alpha  - cos \alpha) }  \\  \\  =  \frac{cos \alpha }{ \frac{cos \alpha  - sin \alpha }{cos \alpha } }   -  \frac{ {sin}^{2} \alpha  }{(sin \alpha  - cos \alpha )}  \\  \\  =  \frac{ {cos}^{2} \alpha  }{(cos \alpha  - sin \alpha) }  -  \frac{ {sin}^{2} \alpha  }{(sin \alpha  - cos \alpha )}  \\  \\  =  \frac{ {cos}^{2}  \alpha }{(cos \alpha  - sin \alpha )}  +  \frac{ {sin}^{2} }{(cos \alpha  - sin \alpha )}   \\  \\  =  \frac{ {cos}^{2} \alpha  +  {sin}^{2} \alpha   }{cos \alpha  - sin \alpha }  \\  \\  =   \frac{1}{cos \alpha  - sin \alpha }  \\  \\ .....(multiplying \: numerator \: and \: denominator \: by   \\ \: (cos \alpha  + sin \alpha ) \\  \\  =  \frac{1}{(cos \alpha  - sin \alpha) }  \times  \frac{cos \alpha  + sin \alpha }{cos \alpha  + sin \alpha }  \\  \\  =  \frac{cos \alpha  + sin \alpha }{ {cos}^{2} \alpha  -  {sin}^{2}  \alpha  }   \\  \\  = cos \alpha  + sin \alpha ...... = r.h.s

hope it helps.......

hope it helps.......mark it as brainliest......

Answered by ᎷíssGℓαмσƦσυs
7

Answer:

(1−tanα)

cosα

(sinα−cosα)

sin

2

α

=

(1−

cosα

sinα

)

cosα

(sinα−cosα)

sin

2

α

=

cosα

cosα−sinα

cosα

(sinα−cosα)

sin

2

α

=

(cosα−sinα)

cos

2

α

(sinα−cosα)

sin

2

α

=

(cosα−sinα)

cos

2

α

+

(cosα−sinα)

sin

2

=

cosα−sinα

cos

2

α+sin

2

α

=

cosα−sinα

1

.....(multiplyingnumeratoranddenominatorby

(cosα+sinα)

=

(cosα−sinα)

1

×

cosα+sinα

cosα+sinα

=

cos

2

α−sin

2

α

cosα+sinα

=cosα+sinα......=r.h.s

Similar questions