prove that above question
Attachments:
Answers
Answered by
2
Answer:
hope it helps.......
hope it helps.......mark it as brainliest......
Answered by
7
Answer:
(1−tanα)
cosα
−
(sinα−cosα)
sin
2
α
=
(1−
cosα
sinα
)
cosα
−
(sinα−cosα)
sin
2
α
=
cosα
cosα−sinα
cosα
−
(sinα−cosα)
sin
2
α
=
(cosα−sinα)
cos
2
α
−
(sinα−cosα)
sin
2
α
=
(cosα−sinα)
cos
2
α
+
(cosα−sinα)
sin
2
=
cosα−sinα
cos
2
α+sin
2
α
=
cosα−sinα
1
.....(multiplyingnumeratoranddenominatorby
(cosα+sinα)
=
(cosα−sinα)
1
×
cosα+sinα
cosα+sinα
=
cos
2
α−sin
2
α
cosα+sinα
=cosα+sinα......=r.h.s
Similar questions