Math, asked by ShripadKhandare, 4 months ago

Prove That.. Above Question.​

Attachments:

Answers

Answered by Anonymous
10

 \orange{   \bf\underline {\underline{Question \:  :}}}\\ \\ \\   \bull\bf \: \:  \:  \:  Prove  \:  \: that \\ \\ \to \:  \tt  \:  \:  \: \frac{ \cos \theta}{1 -  \tan \theta} -  \frac{ \sin \theta}{ \cot \theta - 1} = \cos \theta +  \sin \theta\\  \\  \\  \orange{   \bf\underline {\underline{Step-by-step \:  \:  explanation \:  :}}}\\  \\  \\  \bf \frac{ \cos \theta}{1 -  \tan \theta} -  \frac{ \sin \theta}{ \cot \theta - 1}  \\  \\  \\  \implies \tt\frac{ \cos \theta} {  \frac{ \cos \theta -  \sin \theta}{ \cos\theta}}    - \frac{ \sin \theta}{ \frac{ \cos \theta - \sin \theta}{ \sin \theta} } \\  \\  \\  \implies \tt  \frac{ \cos ^{2} \theta -  { \sin}^{2} \theta  }{ \cos \theta -  \sin \theta}  \\  \\  \\  \implies \tt  \frac{ \big( \cos \theta +  \sin \theta \big)  \cancel{\big( \cos \theta -  \sin \theta \big)}}{  \cancel{\big( \cos \theta -  \sin \theta \big)} } \\  \\  \\  \implies  \green{\bf \large \bigg( \cos \theta +  \sin \theta \bigg)} \:  \:  \bf \:  \:  \:  \: proved

Similar questions