Math, asked by sonp, 1 year ago

prove that adjacent angles of a parallelogram are supplementary . with diagram

Answers

Answered by Mercidez
5
\boxed{\boxed{\boxed{\bold{\blue{Solution : \longrightarrow}}}}}

\bold{Let \: \: ABCD \: \: be \: \: a \: \: || gm.}

\bold{\underline{To \: \: prove \: \: that}}

\bold{ ∠ A +∠ B = ∠ B + ∠ C = ∠ C +} \\ \bold{∠ D = ∠ D + ∠A = 180°}

\bold{\underline{Proof :}}

\bold{AD || BC \: \: and \: \: AB \: \: is \: \: the \: \: transversal.}

\bold{Therefore, \: \: ∠ A + ∠ B = 180° \: \: [Since \: \: }\\ \bold{sum \: \: of \: \: interior \: \: angles \: \: on \: \: the} \\ \bold{same \: \: side \: \: of \: \: the \: \: transversal \: \: is }\\ \bold{ 180°}]

\bold{Similarly,} \\ \\ \bold{ ∠ B + ∠ C = 180°} \\ \\ \bold{∠ C + ∠ D = 180 °}\\ \\ \bold{∠ D +∠ A = 180°}

\bold{Hence, \: \: sum \: \: of \: \: any \: \: two \: \: adjacent}
\bold{angles \: \: of \: \: ||gm \: \: are \: \: supplementary.}

\boxed{\boxed{\boxed{\bold{\green{Have \: \: a \: \: nice \: \: day.}}}}}
Attachments:
Similar questions